Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Guang-Quan Mei, a Ke-Long Huang a* and Hai-Ping Huang b*

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and ^bLaboratory for Self-Assembly Chemistry, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of

Correspondence e-mail: klhuang@mail.csu.edu.cn, huanghaiping@ruc.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.013 \text{ Å}$ R factor = 0.050wR factor = 0.153Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

μ -3,3'-Bisacetylacetonato-bis[(1,10-phen-anthroline)palladium(II)] bis(hexafluoro-phosphate) acetonitrile solvate

In the title complex, $[Pd_2(C_{10}H_{12}O_4)(C_{12}H_8N_2)_2](PF_6)_2$ - CH_3CN , the Pd^{II} centre has a distorted cis square-planar geometry defined by an O,O'-bidentate bisacetylacetonate dianion ligand and a chelating 1,10-phenanthroline ligand. The crystal structure features electrostatic interactions between the cations and anions, intermolecular π - π interactions between pairs of 1,10-phenanthroline rings, and weak hydrogen bonds involving hexafluorophosphate anions $(C-H\cdots F)$ and the acetonitrile solvent molecules $(C-H\cdots N)$.

Received 6 September 2006 Accepted 25 September 2006

Comment

In a previous article, we reported the structure of μ -3,3′-bisacetylacetonato-bis[(2,2′-bipyridine)palladium(II)] bis(hexafluorophosphate) acetonitrile solvate (Mei *et al.*, 2006). Here, we report the crystal structure of a new dinuclear palladium(II) complex, (I) (Fig. 1), based on 1,10-phenanthroline and bisacetylacetonate dianion ligands.

As shown in Fig. 2, the compound packs by electrostatic forces between the cations and anions, π – π interactions between planar [Pd(phen)] units, and weak hydrogen bonds involving hexafluorophosphate anions and acetonitrile solvent molecules. The centroid–centroid contact distance between two phenanthroline molecules is 3.356 (4) Å, and the angle between the ring-centroid vector and the normal to one of the phenanthroline ring planes is about 20° .

The non-classical hydrogen bonds that connect cations, anions and solvent acetonitrile molecules are detailed in Table 2.

Experimental

A mixture of (1,10-phenanthroline)dinitratopalladium(II) (41.0 mg, 0.10 mmol) and bisacetylacetone (9.9 mg, 0.05 mmol) was dissolved in water (2 ml) and the mixture was stirred overnight. A tenfold excess of potassium hexafluorophosphate was added, which resulted in the immediate deposition of (I) as yellow microcrystals. The crystals were filtered off, washed with a minimum amount of cold water and dried under vacuum (yield 53.2 mg). Crystals appropriate

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Figure 1

A view of the cation of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

for data collection were obtained by the vapour diffusion of diethyl ether into a $1.0~\mathrm{m}M$ solution of (I) in acetonitrile.

Crystal data

$[Pd_2(C_{10}H_{12}O_4)(C_{12}H_8N_2)_2](PF_6)_2$	Z = 16
C_2H_3N	$D_x = 1.777 \text{ Mg m}^{-3}$
$M_r = 1100.40$	Mo $K\alpha$ radiation
Orthorhombic, Fdd2	$\mu = 1.05 \text{ mm}^{-1}$
a = 22.321 (5) Å	T = 298 (2) K
b = 47.887 (10) Å	Block, yellow
c = 15.392 (3) Å	$0.45 \times 0.25 \times 0.20 \text{ mm}$
$V = 16453 (6) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\min} = 0.740, T_{\max} = 0.810$

36699 measured reflections 8766 independent reflections 7916 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$ $\theta_{\rm max} = 27.0^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.153$ S = 1.028766 reflections 557 parameters H-atom parameters constrained
$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.1556P)^2 \\ &+ 1.928P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} &= 0.001 \\ \Delta\rho_{\rm max} &= 0.75 \text{ e Å}^{-3} \\ \Delta\rho_{\rm min} &= -1.32 \text{ e Å}^{-3} \\ \text{Absolute structure: Flack (1983),} \\ \text{with 4110 Friedel pairs} \\ \text{Flack parameter: 0.47 (4)} \end{split}$$

Table 1 Selected geometric parameters (Å, °).

Pd1-N1	2.010 (6)	Pd1-O1	1.962 (5)
Pd1-N2	2.013 (6)	Pd1-O2	1.966 (5)
Pd2-N3	2.023 (6)	Pd2-O3	1.959 (5)
Pd2-N4	1.993 (6)	Pd2-O4	1.975 (5)
N1-Pd1-N2	81.7 (3)	N3-Pd2-O4	174.6 (3)
N1-Pd1-O1	92.7 (2)	N3-Pd2-N4	81.9 (3)
N1-Pd1-O2	173.2 (2)	N4-Pd2-O3	174.6 (3)
N2-Pd1-O1	174.3 (2)	N4-Pd2-O4	93.1 (3)
N2-Pd1-O2	92.2 (2)	O1-Pd1-O2	93.5 (2)
N3-Pd2-O3	92.7 (2)	O3-Pd2-O4	92.3 (2)

Figure 2
The packing of (I). Hydrogen bonds are shown as dashed lines.

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
C3—H3A···F5 ⁱ	0.93	2.47	3.380 (12)	166
C8−H8A···F9 ⁱⁱ	0.93	2.20	3.102 (13)	163
C15−H15A···F3 ⁱⁱⁱ	0.93	2.48	3.031 (14)	118
$C20-H20A\cdots F10^{iv}$	0.93	2.45	3.162 (16)	133
$C22-H22A\cdots N5^{v}$	0.93	2.56	3.375 (15)	146

Symmetry codes: (i) $-x+\frac{1}{4}, y-\frac{1}{4}, z-\frac{1}{4},$ (ii) $-x-\frac{1}{4}, y-\frac{1}{4}, z+\frac{1}{4};$ (iii) $x-\frac{1}{4}, -y+\frac{3}{4}, z+\frac{1}{4};$ (iv) $x-\frac{1}{4}, -y+\frac{3}{4}, z-\frac{3}{4},$ (v) $-x, -y+\frac{1}{2}, z-\frac{1}{2}.$

The value of the Flack (Flack, 1983) parameter indicates inversion twinning. The aromatic H atoms were constrained to an ideal geometry, with C—H distances of 0.93 Å and with $U_{\rm iso}({\rm H})=1.2 U_{\rm eq}({\rm C})$. The methyl H atoms of the bisacetylacetonate dianion were also constrained to an ideal geometry, with C—H distances of 0.96 Å and with $U_{\rm iso}({\rm H})=1.5 U_{\rm eq}({\rm C})$. The deepest hole in the final difference Fourier map is located 0.17 Å from Pd2.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

This work was supported by the Natural Science Foundation of Jiangxi Province (grant No. 0520083).

References

Bruker (2001). SMART (Version 5.628), SAINT-Plus (Version 6.45) and SADABS (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Mei, G.-Q., Huang, K.-L., Huang, H.-P. & Li, Y.-Z. (2006). *Acta Cryst.* E62, m2368–m2370.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.