Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guang-Quan Mei, ${ }^{\text {a }}$ Ke-Long

 Huang $^{\text {a }}$ and Hai-Ping Huang ${ }^{\text {b }}$ *${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, and
${ }^{\mathbf{b}}$ Laboratory for Self-Assembly Chemistry, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China

Correspondence e-mail:
klhuang@mail.csu.edu.cn,
huanghaiping@ruc.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.050$
$w R$ factor $=0.153$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
$\mu-3,3^{\prime}$-Bisacetylacetonato-bis[(1,10-phenanthroline)palladium(II)] bis(hexafluorophosphate) acetonitrile solvate

In the title complex, $\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot-$ $\mathrm{CH}_{3} \mathrm{CN}$, the $\mathrm{Pd}^{\mathrm{II}}$ centre has a distorted cis square-planar geometry defined by an O, O^{\prime}-bidentate bisacetylacetonate dianion ligand and a chelating 1,10-phenanthroline ligand. The crystal structure features electrostatic interactions between the cations and anions, intermolecular $\pi-\pi$ interactions between pairs of 1,10 -phenanthroline rings, and weak hydrogen bonds involving hexafluorophosphate anions ($\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{F})$ and the acetonitrile solvent molecules $(\mathrm{C}-\mathrm{H} \cdots \mathrm{N})$.

Comment

In a previous article, we reported the structure of $\mu-3,3^{\prime}$-bis-acetylacetonato-bis[(2,2'-bipyridine)palladium(II)] bis(hexafluorophosphate) acetonitrile solvate (Mei et al., 2006). Here, we report the crystal structure of a new dinuclear palladium(II) complex, (I) (Fig. 1), based on 1,10-phenanthroline and bisacetylacetonate dianion ligands.

(I)

As shown in Fig. 2, the compound packs by electrostatic forces between the cations and anions, $\pi-\pi$ interactions between planar $[\mathrm{Pd}(\mathrm{phen})]$ units, and weak hydrogen bonds involving hexafluorophosphate anions and acetonitrile solvent molecules. The centroid-centroid contact distance between two phenanthroline molecules is 3.356 (4) \AA, and the angle between the ring-centroid vector and the normal to one of the phenanthroline ring planes is about 20°.

The non-classical hydrogen bonds that connect cations, anions and solvent acetonitrile molecules are detailed in Table 2.

Experimental

A mixture of (1,10-phenanthroline) dinitratopalladium(II) $(41.0 \mathrm{mg}$, 0.10 mmol) and bisacetylacetone ($9.9 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in water (2 ml) and the mixture was stirred overnight. A tenfold excess of potassium hexafluorophosphate was added, which resulted in the immediate deposition of (I) as yellow microcrystals. The crystals were filtered off, washed with a minimum amount of cold water and dried under vacuum (yield 53.2 mg). Crystals appropriate

Received 6 September 2006
Accepted 25 September 2006
\qquad

Figure 1
A view of the cation of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
for data collection were obtained by the vapour diffusion of diethyl ether into a $1.0 \mathrm{~m} M$ solution of (I) in acetonitrile.

Crystal data

$\left[\mathrm{Pd}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot-$	$Z=16$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	$D_{x}=1.777 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1100.40$	Mo $K \alpha$ radiation
Orthorhombic, $F d d 2$	$\mu=1.05 \mathrm{~mm}^{-1}$
$a=22.321(5) \AA$	$T=298(2) \mathrm{K}$
$b=47.887(10) \AA$	Block, yellow
$c=15.392(3) \AA$	$0.45 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.740, T_{\text {max }}=0.810$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.153$
$S=1.02$
8766 reflections
557 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1556 P)^{2}\right. \\
& +1.928 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.75 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-1.32 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 4110 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.47 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

Pd1-N1	$2.010(6)$	$\mathrm{Pd} 1-\mathrm{O} 1$	$1.962(5)$
$\mathrm{Pd} 1-\mathrm{N} 2$	$2.013(6)$	$\mathrm{Pd} 1-\mathrm{O} 2$	$1.966(5)$
$\mathrm{Pd} 2-\mathrm{N} 3$	$2.023(6)$	$\mathrm{Pd} 2-\mathrm{O} 3$	$1.959(5)$
$\mathrm{Pd} 2-\mathrm{N} 4$	$1.993(6)$	$\mathrm{Pd} 2-\mathrm{O} 4$	$1.975(5)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 2$	$81.7(3)$	$\mathrm{N} 3-\mathrm{Pd} 2-\mathrm{O} 4$	$174.6(3)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{O} 1$	$9.7(2)$	$\mathrm{N} 3-\mathrm{Pd} 2-\mathrm{N} 4$	$81.9(3)$
$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{O} 2$	$173.2(2)$	$\mathrm{N} 4-\mathrm{Pd} 2-\mathrm{O} 3$	$174.6(3)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{O} 1$	$174.3(2)$	$\mathrm{N} 4-\mathrm{Pd} 2-\mathrm{O} 4$	$93.1(3)$
$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{O} 2$	$92.2(2)$	$\mathrm{O} 1-\mathrm{Pd} 1-\mathrm{O} 2$	$93.5(2)$
$\mathrm{N} 3-\mathrm{Pd} 2-\mathrm{O} 3$	$92.7(2)$	$\mathrm{O} 3-\mathrm{Pd} 2-\mathrm{O} 4$	$92.3(2)$

Figure 2
The packing of (I). Hydrogen bonds are shown as dashed lines.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3A $\cdots 5^{\text {i }}$	0.93	2.47	3.380 (12)	166
C8-H8A $\cdots \mathrm{F}^{\text {ii }}$	0.93	2.20	3.102 (13)	163
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{~F}^{\text {iii }}$	0.93	2.48	3.031 (14)	118
$\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A} \cdots \mathrm{~F} 10^{\text {iv }}$	0.93	2.45	3.162 (16)	133
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{~N} 5^{\text {v }}$	0.93	2.56	3.375 (15)	146

Symmetry codes: (i) $-x+\frac{1}{4}, y-\frac{1}{4}, z-\frac{1}{4}$; (ii) $-x-\frac{1}{4}, y-\frac{1}{4}, z+\frac{1}{4}$; (iii) $x-\frac{1}{4},-y+\frac{3}{4}, z+\frac{1}{4}$; (iv) $x-\frac{1}{4},-y+\frac{3}{4}, z-\frac{3}{4}$; (v) $-x,-y+\frac{1}{2}, z-\frac{1}{2}$.

The value of the Flack (Flack, 1983) parameter indicates inversion twinning. The aromatic H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The methyl H atoms of the bisacetylacetonate dianion were also constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The deepest hole in the final difference Fourier map is located $0.17 \AA$ from Pd2.

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Natural Science Foundation of Jiangxi Province (grant No. 0520083).

References

Bruker (2001). SMART (Version 5.628), SAINT-Plus (Version 6.45) and $S A D A B S$ (Version 2.10). Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mei, G.-Q., Huang, K.-L., Huang, H.-P. \& Li, Y.-Z. (2006). Acta Cryst. E62, m2368-m2370.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

